

110 and 120 Carrs Drive Yamba NSW 2464

Potable Water Supply Service Assessment

FINAL Report V1 - 8 November, 2023

H2One Pty Ltd

Water, Sewer and Stormwater Engineering Specialists

H2One Pty Ltd

ABN 20 130 354 764

- P 07 5463 9538
- E info@H2One.com.au
- W h2one.com.au

Reviewed by RPEQ	Reg. No.	Signed	Date
Joshua May	18064		8 November, 2023

Version	Date	Author	Reviewer
DRAFT - V1	17 October, 2023	D Colledge	J May
FINAL - V1	8 November, 2023	D Colledge	J May

Copyright in the whole and every part of this document belongs to H2One Pty Ltd and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person without the prior written approval of H2One Pty Ltd.

TABLE OF CONTENTS

1	INTR	ODUCTION	. 2
	1.1	Background	. 2
	1.2	Objectives	. 2
	1.3	Potable Water Supply Service Strategy	. 2
2	MET	HODOLOGY	. 3
	2.1	Desired Standards of Service	. 3
	2.2	Demand Assessment	. 3
	2.3	Hydraulic Model Assessment	. 3
3	RESU	JLTS	. 5
4	CON	CLUSION	. 6
5	REFE	RENCES	. 7
6	APPE	ENDICES	. 8
	Append	lix 1. Development Site Layout and Servicing Strategy	. 9
	Append	lix 2. CVC Water Mains Test Certificate	10
	Append	lix 3. Potable Water Supply Pipe Layout Plan	11
	Append	lix 4. Raw Hydraulic Modelling Results	12

1 INTRODUCTION

1.1 Background

A manufactured housing development at 110 and 120 Carrs Drive, Yamba NSW 2464, Lot 2 on DP733507 and 10 on DP1280863, is currently in the DA Assessment phase (DA has been submitted and RFI issued by CVC). This hydraulic analysis is being completed to respond to the RFI). The development's proposed land-use type and density is 216 x 2 bedroom units.

MDE Pty Ltd developed the potable water service strategy and concept pipe layout plan for the development (refer to Appendix 1 for further details). To support the DA, Clarence Valley Council (CVC) requested a hydraulic modelling assessment of the proposed servicing strategy, to ensure adequate service will be achieved throughout the development.

H2One Pty Ltd was engaged to complete the hydraulic modelling analysis, in accordance with CVC's Design Standards; *New South Wales Development Design Specification, D11, Water Supply* (2009), to confirm the proposed strategy and size relevant infrastructure. As per the Applicant's request, this assessment was based on CVC's design standards, and <u>not</u> the relevant design requirements for private plumbing infrastructure, e.g. Plumbing Code of Australia (PCA) and Australian Standard 2419.1.

The results of the assessment and confirmed reticulation layout plans are presented in this report.

1.2 Objectives

The key objectives of the project were as follows:

- 1. Estimate potable water demands for the subject site, at ultimate development.
- 2. Develop a hydraulic model for the proposed water supply reticulation network, utilising CVC's flow and pressure boundary conditions at the relevant connection point.
- 3. Complete a standard flow and fire flow hydraulic analysis to confirm infrastructure sizing/layout, in accordance with CVC's Design Standards.
- 4. Issue an RPEQ certified hydraulic assessment report and associated concept pipe layout plans.

1.3 Potable Water Supply Service Strategy

The water supply service strategy for the subject site consists of an extension of the existing DN150 main, located at the intersection of Carrs Drive and Miles Street, to the eastern property boundary of the subject site. The development will be serviced by two (2) connection points along Carrs Drive, adjacent to the eastern property boundary of the subject site.

Refer to Appendix 2 for CVC's "Mains Pressure Test" boundary conditions and Appendix 3 for an overview of the proposed water supply service strategy.

2 METHODOLOGY

2.1 Desired Standards of Service

The Design Standards of CVC's *New South Wales Development Design Specification, D11, Water Supply* (2009) were adopted for the project. Where assessment criteria was not available within CVC's Design Standards, the Water Services Association of Australia (WSAA) *Water Supply Code of Australia, WSA 03* (2011) was assumed. A summary of the relevant provisions is presented in Table 1 below.

Table 1. Design specifications adopted for the analysis						
Provision	Specification					
Residential peak instantaneous potable demand	0.15 L/s/ET					
Minimum standard flow network pressure	20 m					
Maximum standard flow network pressure	78 m					
Maximum pipe velocity	3.0 m/s					
Maximum head loss	5 m head/km for <=DN150 3 m head/km >=DN200					
Minimum fire flow network pressure	12 m at peak demand					
Fire flow at hydrant	11 L/s					
Hazen Williams pipe friction co-efficient	<= 150 diameter, 100 >150 <300 diameter, 110					

Table 1. Des	sign specificat	tions adopted	for the analysis
Table 1. Des	Sign Specificat	nons adopted	TOT LITE allarysis

2.2 Demand Assessment

A demand assessment of the development was undertaken to estimate the peak flow rate attributed to the proposed land-use type and density. This was calculated using CVC's peak instantaneous unit rates for potable water (0.15 L/s/ET), in conjunction with demand rates adopted from Water Directorate's Section 64, Determinations of Equivalent Tenements Guidelines (2009). Refer to the table below for a summary of the demand estimation for the subject site, at ultimate development.

Site Land Use and Density	Demand Rate	ET	Potable Peak Flow (L/s)
216 x 2 bedroom unit	0.6 ET/Unit	129.6	19.5

Table 2. Demand estimation for the proposed development

2.3 Hydraulic Model Assessment

The methodology adopted for the hydraulic assessment is as follows.

- An InfoWater hydraulic model was developed for the proposed development, based on the service strategies developed in consultation with CVC, refer to Appendix 3 for further details. The pipe layouts were introduced to a base model as a background layer, and model node/hydrant elements drawn manually.
- 2. All pipes were initially allocated sizing of DN100, as per MDE's pipe layout plan, and assigned the relevant Hazen Williams Roughness co-efficient, i.e. DN100/150 = 100 and DN200 = 110.
- 3. The water supply boundary conditions (issued by CVC) were introduced into the hydraulic model at the relevant connection point/s, in addition to finished surface levels and relevant peak hour water demands.

Note CVC's hydraulic model was not available for the provision of flow and pressure boundary conditions at the time of the assessment. CVC advised MDE and H2One that a field test was sufficient for the sizing of the proposed pipework. To estimate systems pressures at peak hour standard flow and peak hour fire flow event, the respective field test results at 20 L/s @ 490 kPa and 31.5 L/s @ 450 kPa flow rates were adopted for the hydraulic model. No consideration was made for friction losses through the riser, spring hydrant and stand-pipe, which resulted in a conservative hydraulic assessment. Refer to Appendix 2 for details of the relevant field test

- 4. A standard flow and fire flow hydraulic analysis was undertaken on the potable water reticulation layout, where pipe sizes were systematically increased and/or connections adjusted to achieve relevant Design Standards. An unrelated development to the east of Carrs Drive (52 to 54 Miles Street, Yamba) was also considered in the assessment, in the event this site is serviced by the proposed DN150 pipe extension.
- 5. Modelling results were verified and deliverables prepared.

3 RESULTS

As per the methodology described in Section 2.3 of this report, a standard flow and fire flow hydraulic analysis was undertaken on the proposed internal water network layout. The analysis identified that the infrastructure presented in Table 3 and Appendix 3 achieved CVC's Design Standards.

Description	Location	Diameter (DN)	Length (m)
	Throughout the develop. site	100 mm	2,370
Potable water retic. pipe	Carrs Drive and entrance of development site	150 mm	510

Table 3. Summary of potable water infrastructure
--

A summary of the hydraulic modelling results is as follows.

- The proposed reticulation layout presented a standard flow minimum pressure of 38.4 m, at node J404, located at the north-west property boundary.
- The proposed reticulation layout presented a peak hour fire flow minimum pressure of 14.8 m, at node J404.
- The proposed reticulation layout presented a standard flow maximum pressure of 43.6 m, at node J398, located at the northern connection point along Carrs Drive.

In summary, the proposed potable water pipe layout complied with CVC's Design Standards, across all development stages, with an average network pressure of 40.2 m. Refer to Appendix 4 for detailed modelling results.

Note the neighbouring development on the eastern side of Carrs Drive (52 to 54 Miles Street, Yamba) was also considered for the hydraulic assessment. The following demands were estimated utilising the following land-use type and density.

- 277 x residential freehold lots
- 1,000 m2 of commercial/retail area
- 35 x 3 bedroom units

This resulted in an estimated 47.3 L/s instantaneous peak flow, for the proposed development. As the flow and pressure boundary conditions provided by CVC show the existing DN150 with a max flow of 31.5 L/s @ 450 kPa, the DN150 main extension would be insufficient to service the additional demand. However, MDE has advised a DN250 trunk main will be constructed in the future, from the existing DN250 trunk main located at the intersection of Carrs Drive and Miles Street, heading east along Miles Street, to the existing DN375 trunk main along Yamba Road. It's likely the proposed development at 52 to 54 Miles Street would make connection to the proposed DN250 trunk main along the northern property boundary, to service the proposed internal pipework. Based on this service strategy, the proposed DN150 pipe extension should have sufficient capacity to service the subject site.

4 CONCLUSION

A manufactured housing development at 110 and 120 Carrs Drive, Yamba NSW 2464, Lot 2 on DP733507 and 10 on DP1280863, is currently in the DA Assessment phase (DA has been submitted and RFI issued by CVC). This hydraulic analysis is being completed to respond to the RFI). The development's proposed land-use type and density is 216 x 2 bedroom units.

MDE Pty Ltd developed the potable water service strategy and concept pipe layout plan for the development (refer to Appendix 1 for further details). To support the DA, Clarence Valley Council (CVC) requested a hydraulic modelling assessment of the proposed servicing strategy, to ensure adequate service will be achieved throughout the development.

H2One Pty Ltd was engaged to complete the hydraulic modelling analysis, in accordance with CVC's Design Standards; *New South Wales Development Design Specification, D11, Water Supply* (2009), to confirm the proposed strategy and size relevant infrastructure. As per the Applicant's request, this assessment was based on CVC's design standards, and <u>not</u> the relevant design requirements for private plumbing infrastructure, e.g. Plumbing Code of Australia (PCA) and Australian Standard 2419.1.

The hydraulic analysis determined that the reticulation network layout presented in Appendix 3 satisfied the minimum Design Standards, and is therefore recommended for CVC approval, pending a review of hydraulic performance based on any requirements relevant to private plumbing infrastructure, e.g. AS2419.1.

5 REFERENCES

Water Directorate (2009) "Section 64, Determinations of Equivalent Tenements Guidelines" Clarence Valley Council (2009) "New South Wales Development Design Specification, D11, Water Supply"

APPENDICES

Appendix 1. Development Site Layout and Servicing Strategy

BU2A	172	151	150	129	in 128	, 107	58 5	7 56 5	5 54	53	52 51 5	50 49 4	8 47	46 45	44 43		
RV23 RV22 RV21	171	152	149	130	127	108					М ЗУ	ROA	D 1				
D TANK No.7	170	153	148	131	<u> </u>	109	106	91		90	75	74	5	9	42 •		
RV18 RV17 RV16	169	154	147	132	125	110	105	92	SW	89	76	73	6	0	41		
RV15	168	155	146	133	124	111	¥ 104	93		88	77	SW 72	6	1	. 40 ⊈	38 37	36
0 11 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	167	156	145	134	123	<u> </u>	s 103	94		87	78	• 71	6		39		<u></u>
ROAD 11 ROAD 11	166		144		122	113	102	95	ROAD 4	86	~ 蒜 79	KOAD 3	6	3		MS — MS	RI
RVT RVF	165	158	143	136	121	∽ 114 [≰]	101	96		85	° 80	SW 69		4	19	20 ³	
RV5 RVA	< 164 •	159 끓	142	137	sw 120	115	S N N		×		×	¥			18	21	
	163	160	141	138	119	∽ 116 •	100	97		84	81	68	6	5	17	22	
	162	161	140	139	¥ 118	117	99	98		83	82	67	6	6	1 6	23	D 13
	MS -				• · · · · · · · · · · · · · · · · · · ·						ROAD 2			SY ST	15	24	ROA
SW	216	205	204	195	194	183	182	173		CP16 CP15 CP14 CP13	CP12 CP11 CP10 CP9 CP8 CP8 CP6			DCP17 DCP18		25	- And
SW -	215	206	203	∽ 196	• 193	184	181	∽ 174	DCP5					CP19 CP20 CP21 >		BIO-BASIN NO.A	
8 80 ¹					e	185	4D 9 180	175	6 QV CP6 CP6 CP6 CP6 CP6 CP6 CP4 CP3		BOWLS				12	BIO-BI	
ROAD 8	214	207 208			192 191	∽ 186	-8					COMMUN FACILITI					
- MS -	213	200	201	198	190	187	179	176	SW						B		
	< 8		200	5 199			178	∽ 177		CROQU	ET			No.			
	211	210	段降35 CP34 CP	33 101932 CP31 RM	189 	188 ^L	RM CP30 CP29RMCF	28 CP27 CP2®M					OSD TANK		NO		
	BIO-BASIN	No.8	BIO-BA	ASIN No.7	BIO-B	ASIN No.6		D-BASIN No.5		OSD ⁻	TANK No.2				A B	B ₇	6
									EXIS	STING OP	EN CHANNEL			and the state of t			
	OSD	TANK No.5 -		ANK No.4	0	SD TANK No.3	and a standard standa			<mark>╘_┍╢╶┠╸<mark>╛┈╹╴╹╸╹╸</mark>┨╌╢┯┠╍┠┯╊</mark>		<mark>╷╷╷╷╷╴┙<mark>┝╴╽╷┥╶┥╺</mark>┥╍┥┿┥┿┥┍┑<mark>╱╶╷</mark></mark>	BIO-BASIN	No.1			
5 0 10 2								<u>SEWE</u> F	R AND WA							NOTE: DA CONCEPT DE	SIGN PHA
Horizontal Scale	20 30 40 21:600 (A1) 1:1200 (A3)					LEGEND			SCALE 1:600	0						SEWER AND WATERMA	.IN PIPE SI
	NS TO BE	PURPC	MINARY PLANS DSES ONLY NOT				 DEVELOPMENT BOUNDAI INTERNAL LOT BOUNDAF 			ERMAIN Ø100m VITY SEWER Ø15		HEADWALL DUAL PILLAR HYDRAN	т		PROPOSED MHE A	ALLOTMENT ONCRETE ROAD PAVEI	MENT
PRIN	NTED IN COLO	CONS	TRUCTION				- BIO - BASIN TOP - CHANNEL TOP OF BANK		RM LOW	PRESSURE SEW	er 🕺 s	SLUICE VALVE OW PRESSURE SEWEF		VE	NEW INTERNAL CO	ONCRETE INTERSECTIO	ON TREAT
		ORMATION FOR CL S DRAWING NUMB					CHANNEL CENTRE LINE DESIGN CONTOURS DEPODOSED STORMWATEL		WAT	ER MAIN TEE ER METER RMWATER DRAII		OW PRESSURE SEWER	BOUNDARY KIT		MHE BOUNDARY MHE BOUNDARY	SETBACK 3m WIDE 'NG SETBACK 10m WIDE 'N	
			DESIGNED: T.RYDEN		SEPT 2022		- PROPOSED STORMWATE	Copyright		CLIENT				MBER			
			DRAWN: A.SCHMID SURVEYING:	SCALE:	AS SHOWN A1		TO TO CON BY COP PERM ANY	THE DESIGN AND DOCUMENTATI TAINED ON THIS DRAWING, THIS COPYRIGHT AND CANNOT BE IED IN ANY FORM WITHOU IISSION OF MANAGE-DESIGN-EI LICENSF FXPRESSED OR IMPLIFI	ION OF THE WORK WORK IS COVERED REPRODUCED OR JT THE WRITTEN NGINEER PTY LTD. D. TO THE USE OF	TITLE					110 & 120 CA YAMBA, NSV		IN I
ISSUED FOR DEVELOPMENT APPLIC	ATION DESCRIPTION	08.09.202 DATE	NOT FC	OR CONSTRU	CTION	Aanage Desig	n Fhainaar I	DOCUMENT IS RESTRICTED TO EEMENT BETWEEN THE CLIENT RAWING AND MANAGE-DESIGN-EI www.md-engineer.			CARRS DRIVE, YA MENT APPLICATI			VAMBA		3507 & LOT 32 D	P1288f

									N150DN156	
							SDR11 SEWE CARRS DRIV		DN158 DN158	
		AS-		CON	INECT TO I	EXISTING V	/ATERMAIN		DN159 DN159 DN159	
37	36	35	34		,	31 «	30			
20		ROAD 12	RM- ROAD 15	2	sw RM 2	9	RM	FM	LOW PRE SEWER FI METER IN	LOW N
21 22		26	27	28	BIO-BI	SIM NO.3			CONCRE	TE PIT
23	a ROAD 13							E 3	esting esting	
5 BASIN N	o.A	ENSTING	OPEN CHA	NNEL		D BASIN	10		DNISe DNISe	
			***		ROAD 14	×	9		DNIS9 DNIS9	
AS		RC	AD 1)		KIT GATE SLIDEF		-DNIS9 -DN	CARR'S DRIVE
7	6	5	4	3	<u> </u>	2		ERBOXES	esting	0
A CONCEPT	DESIGN PH	ASE	+ + -		CONN	JECT TO EX	ISTING WA	FERMAIN -		
ND WATERI NT E ROAD PAV E INTERSEC PATH WITH	VEMENT TION TREA ⁻	TMENTS &			VI SC BI	SITOR AN COUR PRO O-BASIN E		IONAL VEH		
3m WIDE '						O-BASIN \				

(10m WIDE 'NO BUILD ZONE'

BIO-BASIN FLOOR GRASSED AREA

DA CIVIL DRAWING

DRAWING TITLE:

SEWER AND WATER RETICULATION PLAN

LOT 32 DP128863 DWG No:

D42

SHEET: 42 OF 45 REV: 0

Appendix 2. CVC Water Mains Test Certificate

clarence VALLEY COUNCIL

04 October 2023

Reference: Mains Pressure Test Contact: Philip A. Moore

Owner: Richard Volpe - Clifton Yamba Land Pty Ltd Applicant: Andrew Smith (Manage Design Engineer Pty Ltd) Email: andrew@mde.au

Re: Application for Pressure Test Certificate For 90 Carrs Drive Yamba

For your information, results of the requested watermain flow/pressure testing are noted below:

<u>DATE OF TEST:</u>	22/09/23	<u>TIME OF TEST:</u>	9:30AM

LOCATION: Carrs Drive (Miles Street 150mm)

WATERMAIN SIZE & TYPE: 150mm

	FLOW L/SEC	PRESSURE (kPa)
	No flow	568
	5	558
	10	529
	15	509
	20	490
	25	450
Maximum Flow	31.5	450

You are advised that the above flow and pressure information applies only to the flow and pressure available at the time of the test and is not representative of conditions at all times of the day or season. Conditions could be affected by system alterations, variations in demands or changes in the hydraulic operation of the water network.

Should you require any further information, please do not hesitate to contact Council's Water Cycle Section on (02) 6645 0253 or (02) 6645 0273.

Yours faithfully

for Phillip A. Moore Supervisor (Water & Sewer East)

Appendix 3. Potable Water Supply Pipe Layout Plan

H2One Pty Ltd gives no warranty in relation to the data (including accuracy, reliability, completeness or
suitability) and accepts no liability (including without limitation, liability in negligence) for any loss, damage or costs
(including consequential damage) relating to any use of the data.

		0 30	0 600	FILE REFERENCE:	
		Met	res		
		SURVEYED BY / DATE:	SURVEY CHECKED:	CAD FILE:	Clarence Valley Coun
APPROVED					Locked Bag 23 Grafton NSW 2460

Appendix 4. Raw	Hydraulic Modelling Results
-----------------	-----------------------------

	P555 P559 P561 P563 P565	100 100	100		Rate (L/s)	(m/s)	(m)
	P561 P563	100	100	27.2	1.2	0.2	0.0
	P563		100	68.3	0.1	0.0	0.0
		100	100	77.2	0.5	0.1	0.0
	P565	100	100	98.2	1.1	0.1	0.1
		100	100	35.7	1.9	0.2	0.1
	P567	100	100	64.4	4.1	0.5	0.4
	P569	100	100	50.4	2.9	0.4	0.2
	P571	100	100	64.8	0.4	0.0	0.0
	P573	100	100	52.0	2.6	0.3	0.1
	P575	100	100	50.1	6.0	0.8	0.6
	P577	100	100	50.4	6.0	0.8	0.6
Г	P579	100	100	52.7	0.6	0.1	0.0
	P581	100	100	105.5	4.3	0.6	0.7
	P583	100	100	48.0	6.2	0.8	0.6
	P585	100	100	57.0	0.8	0.1	0.0
	P587	150	100	48.8	13.6	0.8	0.4
	P589	100	100	37.1	7.2	0.9	0.6
	P591	100	100	44.8	8.1	1.0	0.9
	P593	100	100	126.6	5.8	0.7	1.4
	P595	100	100	66.2	1.7	0.2	0.1
	P597	100	100	61.8	8.1	1.0	1.3
	P599	100	100	31.2	1.5	0.2	0.0
Ultimate	P601	100	100	53.7	5.8	0.7	0.6
Ontimate	P605	100	100	38.3	7.1	0.9	0.6
	P607	100	100	37.9	5.9	0.7	0.4
	P609	100	100	34.2	1.2	0.2	0.0
	P611	100	100	127.8	4.0	0.5	0.7
	P613	100	100	91.0	3.6	0.5	0.4
	P615	100	100	78.9	0.3	0.0	0.0
	P617	100	100	44.4	0.9	0.1	0.0
	P619	100	100	65.7	0.6	0.1	0.0
	P621	100	100	74.6	0.0	0.0	0.0
	P623	100	100	54.3	1.3	0.2	0.0
	P625	100	100	71.1	0.6	0.1	0.0
	P627	100	100	64.0	1.2	0.2	0.0
L	P629	100	100	57.2	1.4	0.2	0.0
	P631	150	100	300.4	19.4	1.1	4.4
L	P633	150	100	136.1	5.9	0.3	0.2
L	P637	150	100	28.7	0.0	0.0	0.0
L	P639	100	100	43.9	0.6	0.1	0.0
L	P641	100	100	48.8	0.0	0.0	0.0
L	P643	100	100	66.5	3.8	0.5	0.3
	P645	100	100	6.1	0.6	0.1	0.0
L	P647	100	100	18.6	0.0	0.0	0.0
	P649 P651	100 100	100 100	3.6 15.2	0.7	0.1	0.0

Note: "SF" is "standard flow", "PH" is "peak hour" and "HW" is "Hazen-Williams"

Develop. Stage	ID	Demand (ET)	RL AHD (m)	SF PH Demand (L/s)	SF PH Pressure (m)	Fire Flow (L/s)	FF PH Pressure (m)
	J398	0.0	2.0	0.0	43.6	11	33.8
	J400	0.0	2.0	0.0	43.4	11	32.5
	J404	4.1	2.0	0.61	38.4	11	14.7
	J406	4.1	2.0	0.61	38.4	11	16.0
	J408	4.1	2.0	0.61	38.5	11	16.9
	J410	4.1	2.0	0.61	38.6	11	18.1
	J412	4.1	2.0	0.61	39.0	11	20.0
	J414	4.1	2.0	0.61	38.5	11	17.0
	J416	4.1	2.0	0.61	39.6	11	22.5
	J418	4.1	2.0	0.61	40.3	11	24.6
	J420	4.1	2.0	0.61	40.2	11	24.1
	J422	4.1	2.0	0.61	41.6	11	28.3
	J424	4.1	2.0	0.61	41.6	11	28.6
	J426	4.1	2.0	0.61	42.6	11	31.0
	J428	4.1	2.0	0.61	42.6	11	31.1
	J430	4.1	2.0	0.61	43.2	11	32.7
	J432	4.1	2.0	0.61	42.9	11	29.3
Ultimate	J434	4.1	2.0	0.61	42.9	11	31.0
	J436	4.1	2.0	0.61	42.2	11	29.7
	J438	4.1	2.0	0.61	38.4	11	15.5
	J440	4.1	2.0	0.61	38.4	11	15.6
	J442	4.1	2.0	0.61	39.6	11	22.2
	J444	4.1	2.0	0.61	38.5	11	16.2
	J446	4.1	2.0	0.61	38.5	11	16.3
	J448	4.1	2.0	0.61	38.6	11	17.3
	J450	4.1	2.0	0.61	38.6	11	17.4
	J452	4.1	2.0	0.61	39.0	11	19.3
	J454	4.1	2.0	0.61	38.9	11	19.1
	J456	4.1	2.0	0.61	39.6	11	22.0
	J458	4.1	2.0	0.61	40.2	11	24.0
	J460	0.0	2.0	0.0	43.4	11	32.3
	J462	4.1	2.0	0.61	38.6	11	18.0
	J464	4.1	2.0	0.61	38.9	11	19.6
	J466	4.1	2.0	0.61	42.9	11	29.4
	J468	4.1	2.0	0.61	38.4	11	14.8

Nodes - Potable Water